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Rayleigh–Bloch surface waves are acoustic or electromagnetic waves which propagate
parallel to a two-dimensional diffraction grating and which are exponentially damped
with distance from the grating. In the water-wave context they describe a localized
wave having dominant wavenumber β travelling along an infinite periodic array
of identical bottom-mounted cylinders having uniform cross-section throughout the
water depth. A numerical method is described which enables the frequencies of the
Rayleigh–Bloch waves to be determined as a function of β for an arbitrary cylinder
cross-section. For particular symmetric cylinders, it is shown how a special choice of
β produces results for the trapped mode frequencies and mode shapes in the vicinity
of any (finite) number of cylinders spanning a rectangular waveguide or channel. It
is also shown how one particular choice of β gives rise to a new type of trapped
mode near an unsymmetric cylinder contained within a parallel-sided waveguide with
locally-distorted walls. The implications for large forces due to incident waves on a
large but finite number of such cylinders in the ocean is discussed.

1. Introduction
In the theory of classical linearized water waves in unbounded domains, there are

many situations in which trapped modes exist. Trapped modes describe a localized
oscillation having finite energy which exists at some well-defined frequency and which
persists for all time in the absence of external forcing, such as an incident wave field.
The first example of such a trapped mode was due to Stokes (1846) who constructed
a non-trivial solution describing waves travelling along an infinitely-long beach of
constant slope, but whose amplitude decays exponentially out to sea. Such a trapped
mode has been referred to as an edge wave. Similar edge waves have also been
constructed over various sea-bed topographies consisting of local elevations and over
submerged horizontal cylinders. A recent review of the various types of trapped modes
is given by Evans & Kuznetsov (1997). The crucial ingredient in all these problems
is the uniformity of a geometrical cross-section in one of the horizontal coordinates
which allows a periodicity to be extracted from the potential in that coordinate.
Associated with the periodicity is a wavenumber, kc, and frequency ωc = (gkc)

1/2.
Simple arguments show that waves cannot radiate to infinity when the frequency of
motion, ω, is below ωc; the waves (if they exist) must be trapped. In such cases, we
say that we are operating at a frequency below the cut-off frequency, ωc. Without the
existence of such a cut-off, any wavenumber of motion gives rise to radiated waves.
In spectral theory terms, the existence of a trapped mode at a discrete frequency or
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wavenumber is equivalent to the existence of an eigenfunction corresponding to a
point eigenvalue of the appropriate (unbounded) operator plus boundary conditions.
In general, for wave radiation to infinity, the wavenumber spectrum is continuous and
given by k ∈ [0,∞). However, the geometry has induced a cut-off and the continuous
spectrum has been shifted to k ∈ [kc,∞) increasing the possibility of the existence of
a trapped mode wavenumber < kc. It should be noted, however, that trapped modes
have been discovered having k > kc. See, for example, Evans & Porter (1998).

A different example of trapped modes occurs in consideration of the fluid motion
in the vicinity of a single symmetric cylinder of uniform cross-section placed on the
centreline of a parallel open-ended channel of uniform width 2d, say. The existence of
such a trapped mode, antisymmetric about the centreline, was first proved by Callan,
Linton & Evans (1991) for sufficiently small circular cylinders and subsequently Evans,
Levitin & Vassiliev (1994) proved that such trapped modes exist for a wide class of
cylinder cross-sections symmetric with respect to the centreline of the channel. The
authors were motivated to seek such a trapped mode by the following reasoning. In
a channel open-ended at x = ±∞ containing no obstacle, waves of the form eikx,
|x| → ∞ are possible for all values of wavenumber k. With k the spectral parameter in
this problem, the continuous spectrum is given by k ∈ [0,∞). If a symmetric cylinder
is now introduced on the centreline of the channel, then it is natural to consider
symmetric and antisymmetric problems separately. By choosing the latter of these,
and using simple separation of variables far away from the cylinder, it becomes clear
that waves can only propagate to infinity if k > π/2d. Thus, the continuous spectrum
for this antisymmetric problem is k ∈ [π/2d,∞) and one may anticipate discrete
values of k < kc which correspond to trapped modes. It is important to note that
these trapped modes are technically still embedded in the full continuous spectrum.
However, the decomposition into the antisymmetric part is essential if the existence
proof is to succeed. This point will be referred to later.

We shall also be concerned with the case when the Neumann condition on the
channel walls (representing no normal flow through the walls) is replaced by the
less physical case of a Dirichlet condition. Again, for symmetric cylinders on the
centreline, the problem can be decomposed into symmetric and antisymmetric parts.
The latter of these again leads to trapped modes since, in this case, the continuous
spectrum has been reduced to k ∈ [π/d,∞). The conditions under which Dirichlet
trapped modes exist are not clear; applying the rigorous methods of Evans et al.
(1994) shows that Dirichlet trapped modes exist if the maximum width of the body is
less than or equal to half the width of the channel, though geometries such as circular
cylinders increase this ratio to approximately 0.68.

The importance of both Neumann and Dirichlet trapped modes has been brought
sharply into focus by a recent paper by Maniar & Newman (1997) who show
numerically how large forces on cylinders in the middle of a large but finite array
of cylinders can occur at frequencies very close to the corresponding Neumann and
Dirichlet trapped modes around a single cylinder in a channel. Such long periodic
but finite arrays of cylinders arise in a variety of offshore applications such as, for
example, an early design of the proposed offshore runway being developed in Japan.
Prompted by this, the present authors (Evans & Porter 1997) recently extended the
ideas of Callan et al. (1991) to consider the trapped modes which may exist in the
vicinity of any number of circular cylindrical cross-sections placed on the centreline
of a channel. In general it was found that as many trapped modes existed as there
were cylinders present.

Yet another example of trapped modes are Rayleigh–Bloch surface waves which are
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closely connected with the Neumann and Dirichlet trapped modes described above
as we shall see. Rayleigh–Bloch surface waves in the context of water waves are
characterized by a localized wave, having dominant wavenumber β travelling along
an infinite periodic linear array of identical vertical cylinders uniform throughout the
depth. Removing the depth dependence from the problem reduces the field equation
to the two-dimensional Helmholtz equation, and the problem may be regarded as
determining the waves along a periodic diffraction grating applicable to the study
of optics or along a corrugated surface as in electromagnetics where such waves are
described as surface or slow waves.

In the scattering of an incident plane wave by a periodic array of identical cylinders
of period 2d, use is made of the periodicity to argue that the only change in phase
in the solution in a displacement 2d along the line of cylinders is a multiplier e2iβd

being the change in phase of the incident wave field in such a displacement. Here,
β = k sin θ is the component of the wavenumber of the incident wave in the direction
of the line of cylinders and θ is the angle of incident of the plane wave. Clearly
k lies in the continuous spectrum k ∈ [β,∞) and in order to find Rayleigh–Bloch
surface waves in the absence of an incident wave or any wave radiation to infinity it
is desirable to seek real values of k < β.

In the context of water waves, Rayleigh–Bloch surface waves have been constructed
for specific geometrical configurations such as arrays of thin parallel plates (Evans &
Linton 1993), arrays of rectangular blocks (Evans & Fernyhough 1995) and arrays of
circular cylinders (McIver, Linton & McIver 1998 and Evans & Porter 1998). In each
of these papers, the solutions were constructed numerically and no proofs of existence
were provided. In the present paper also, we examine numerically possible geometrical
restrictions on the existence of Rayleigh–Bloch surface waves by considering arrays
of cylinders having an arbitrary cross-section.

We find that Rayleigh–Bloch surface waves occur for cylinder cross-sections which
are symmetric about a line perpendicular to the line through the cylinders. This
is consistent with the results of the authors mentioned in the previous paragraph
and perhaps not unexpected. However it is also found that, for the specific value
β = π/2d, Rayleigh–Bloch surface waves exist about cylinders of arbitrary cross-
section and correspond to standing modes. For symmetric cylinder cross-sections this
solution is just the Neumann trapped mode in a parallel straight-walled waveguide of
width 2d described above. For non-symmetric cylinders they may also be regarded as
Neumann trapped modes but in a parallel waveguide of width 2d which is distorted
in the vicinity of the cylinder. This is a new result which has important implications
for the forces on a finite but large array of such non-symmetric cylinders.

The problem is formulated in §§ 2 and 3. The method of solution is based upon
using an appropriate Green function in Green’s Identity to formulate the problem in
terms of an integral equation for the potential over a single cylinder boundary. The
solution is approximated numerically using a collocation scheme and trapped modes
correspond to the zeros of the resulting complex determinant. It turns out that there
are two circumstances under which the generally complex determinant can be made
real (thus increasing the possibility of the existence of a real zero). The first occurs
when the body is symmetric and uses symmetry properties of the Green function.
The other relies on the fact that the Green function is real if β = π/2d or π/d
and also leads to a real determinant, but in the case β = π/2d without making any
assumptions on the shape of the cylinder cross-section in doing so.

We present results in § 4 for Rayleigh–Bloch surface waves along arrays of sym-
metric cylinders, showing the variation of k against β as well as free-surface plots
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of various modes. Most importantly, the symmetry in the cylinder cross-sections
permits a decomposition of the full potential about any geometric line of symmetry
into its symmetric and antisymmetric parts. By considering each of these separately
whilst choosing values of β = nπ/2Nd, n = 1, . . . , N; 2N one can reconstruct the
trapped modes about N equally-spaced identical cylinders spanning symmetrically
a waveguide of width 2Nd having either Neumann of Dirichlet conditions on the
walls, recently described by Utsunomiya & Eatock Taylor (1998) in their numerical
treatment of the problem. Thus, for N symmetric cylinders, choosing N + 1 specific
values of Rayleigh–Bloch number β results in N + 1 distinct values of wavenumber
k which in turn leads to at least N Neumann and at most N Dirichlet trapped mode
solutions for the corresponding waveguide problem. The advantages of approaching
problems involving trapped modes about cylinders spanning the waveguide from a
Rayleigh–Bloch perspective are clear. One only has to solve for a single cylinder and
apply the appropriate values of β to recover all possible modes, the number and
type of modes are easy to identify, and all the trapped mode frequencies are below
the Rayleigh–Bloch cut-off frequency, something that is not apparent using other
approaches. This allows the solutions to correspond to the vanishing of a real (rather
than complex) determinant.

Also, in § 5 we present results for Rayleigh–Bloch waves about unsymmetric cylin-
ders with βd = 1

2
π and show how they correspond to trapped modes about cylinders

contained within a parallel waveguide distorted locally about the cylinder. The influ-
ence of the existence of such a trapped mode on finite periodic arrays of unsymmetric
cylinders is demonstrated by the close agreement of numerical results computed by
Newman (personal communication) for wavenumbers at which large resonance occurs
in the finite array with those computed from our method for the infinite array.

2. Formulation and preliminaries
Consider an infinite array of identical vertical cylinders extending uniformly

throughout the depth, 0 6 z 6 H , placed periodically along the y-axis at (x, y) =
(0, 2jd), −∞ < j < ∞. Let each of the cylinders have the same general cross-section
D with boundary given by ∂D.

In classical linearized theory if a time-harmonic motion of radian frequency ω is
assumed and the depth dependence removed through a factor cosh k(H − z), the two-
dimensional complex velocity potential for the flow satisfies the Helmholtz equation,

(∇2 + k2)φ(x, y) = 0, ∇2 ≡ ∂xx + ∂yy, (2.1)

everywhere in the field apart from on the boundaries of the cylinders where

∂φ

∂n
= 0, (x, y) ∈ ∂D (2.2)

and n denotes the outward normal derivative with respect to ∂D. Since, for a Rayleigh–
Bloch surface wave, the far field vanishes, we impose

φ(x, y)→ 0 as |x| → ∞, −∞ < y < ∞. (2.3)

Here, k is the real positive root of ω2 = gk tanh kH . Because the geometry is periodic,
the only change in φ in going from a point (x, y) to a point (x, y + 2d), is a change
of phase of say ei2βd, where β is a real (Rayleigh–Bloch) wavenumber which can be
assumed to be positive. Thus in general we may write

φ(x, y + 2jd) = ei2βdjφ(x, y), j = ±1,±2, . . . . (2.4)
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Alternatively we may write

φ(x, y) = eiβyφ̂(x, y) (2.5)

where φ̂(x, y) is a function periodic in y with period 2d.
From (2.4) the total field can be obtained by referring to a single strip of width

2d containing a cylinder cross-section. We may therefore restrict our attention to the
strip (x, y) ∈ (−∞,∞)× [−d, d ] and impose appropriate boundary conditions on the
lines y = ±d expressing the periodicity in (2.4) as

φ(x, d) = ei2βdφ(x,−d), φy(x, d) = ei2βdφy(x,−d) (2.6)

with (2.4) then providing the extension to all (x, y).
In order to proceed in the case of a cylinder of arbitrary cross-section ∂D, we must

also introduce an appropriate Green function, G, say, for the Helmholtz problem
on periodic domains. Such a Green function is generated by a periodic distribution
of sources at (ξ, η + 2md), −∞ < m < ∞ incorporating the appropriate phase shift
between adjacent sources. Thus

(∇2 + k2)G(x, y|ξ, η) = δ(X)

∞∑
m=−∞

δ(Y − 2md)ei2mβd,

where X = x− ξ, Y = y − η with

G(x, y|ξ, η) ∼ 1

2π
ln rm as krm → 0, r2

m = X2 + (Y − 2md)2,−∞ < m < ∞,
and hence, G satisfies the periodicity relations

G(x, y + 2jd|ξ, η) = ei2βjdG(x, y|ξ, η),

G(x, y|ξ, η − 2jd) = e−i2βjdG(x, y|ξ, η),

}
j = −∞, . . . ,∞.

Alternatively we may write

G(x, y|ξ, η) = eiβY Ĝ(x, y|ξ, η),

where Ĝ is a function periodic in both y and η with period 2d. Referring to the strip
y ∈ [−d, d ] the periodicity conditions on y = ±d are

G(x, d|ξ, η) = ei2βdG(x,−d|ξ, η), G(x, y|ξ, d) = e−i2βdG(x, y|ξ,−d),
Gη(x, d|ξ, η) = ei2βdGη(x,−d|ξ, η), Gη(x, y|ξ, d) = e−i2βdGη(x, y|ξ,−d).

}
(2.7)

There are many different representations for the Green function on periodic domains
to be found in the literature and used in a range of applications. Perhaps the simplest
representation for G is the following:

G(x, y|ξ, η) = −1

4

∞∑
m=−∞

e−γm|X|eiβmY

γmd
(2.8)

(see, for example, Linton 1998) where

βm = β + mπ/d, γm = (β2
m − k2)1/2 = −i(k2 − βm)1/2. (2.9)

Note that γm are real for all m provided

0 < k < β < π/d− k, (2.10)
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a condition we impose to ensure that (2.3) is satisfied subsequently. In this case

G(x, y|ξ, η)→ 0 exponentially as |X| → ∞. (2.11)

The form of (2.8) is unsuitable for computational purposes as it is slowly convergent
for X = 0 and the singularity as X,Y → 0 is not explicit.

Linton (1998) has compiled a comprehensive list of representations for G, with
their derivations and compared their merits in terms of computational efficiency and
accuracy. He found that the representation based on Ewald’s summation method is
best and is given by

G(x, y|ξ, η) = −1

4

∞∑
m=−∞

eiβmY

2γmd

[
eγmXerfc

(
γmd

a
+
aX

2d

)
+ e−γmXerfc

(
γmd

a
− aX

2d

)]

− 1

4π

∞∑
m=−∞

ei2βmd

∞∑
n=0

1

n!

(
kd

a

)2n

En+1

(
a2r2

m

4d2

)
(2.12)

(note the change in periodicity from d in Linton’s notation to 2d here), where En is
the exponential integral, and a is a positive real, but otherwise arbitrary, parameter
which affects the convergence of the two series in (2.12). Linton (1998) notes that
increasing a causes the second sum to converge faster and the first slower and vice
versa. In the computations we used a value of a = 1, which appears to be fairly
optimal for a range of other parameters.

The frequency ωc = βc (c is the wave speed) is called the cut-off frequency for
the Rayleigh–Bloch problem. Condition (2.10) states that ω = kc < ωc, suggesting
that we should operate at a frequency below the cut-off frequency. We will assume
henceforth that (2.10) is satisfied and, in addition to (2.11), this provides the following
properties of G:

G(ξ, η|x, y) = Ḡ(x, y|ξ, η) (2.13)

and

G(x,−y|ξ,−η) = Ḡ(x, y|ξ, η), (2.14)

where the bar denotes complex conjugate. Note that for βd = 1
2
π, G(x, y|ξ, η) is real,

a fact which follows from βm = −β−m−1, γm = γ−m−1. Alternatively, it can be argued
that G can be chosen to be real without loss of generality since the equations and
boundary conditions governing G are all real for this choice of βd.

We will also be concerned with the special value of βd = π, with k < β, when
the Green function is 2d-periodic. Clearly (2.10) is now violated and γ−1 = −ik from
(2.9). Thus, from (2.8), G ∼ (−i/4kd)eik|X| as |X| → ∞ and cannot be considered as
a valid candidate for constructing Rayleigh–Bloch surface waves. We can, however,
define a new Green function for βd = π, which is 2d-periodic and decays to zero as
|X| → ±∞. This is the combination

Gπ(x, y|ξ, η) = 1
2
{G(x, y|ξ, η)− G(x, y|ξ,−η)} . (2.15)

Then (2.8) is replaced by

Gπ(x, y|ξ, η) = −1

2

∞∑
m=1

e−γm−1|X|

γm−1d
sin (mπy/d) sin (mπη/d),

such that, for k < β = π/d, Gπ is real and satisfies (2.11), (2.13), (2.14). In addition,
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Gπ satisfies the Dirichlet conditions

Gπ(x, y|ξ, η) = 0, y = 0,±d. (2.16)

Straightforward substitution of (2.12) into (2.15) gives the Ewald summation Green
function representation for Gπ that is used in the computations.

3. Formulation of an integral equation and its discretization
In what follows, we label the points (x, y) and (ξ, η) by p and q.
We are now in a position to use Green’s Identity to formulate the integral equation.

Green’s Identity states that∫∫
W

(
φ(q)∇2G(p|q)−G(p|q)∇2φ(q)

)
dx dy =

∫
∂W

(
φ(q)

∂G(p|q)

∂nq
− G(p|q)

∂φ(q)

∂nq

)
dsq

(3.1)

for p ∈ W , and nq denotes the normal with respect to q. Here, W denotes the part
of the strip (−L, L)× [−d, d ] occupied by the fluid and ∂W denotes the boundary of
W consisting of ∂D (the boundary of the cylinder cross-section) the lines y = ±d,
−L < x < L and x = ±L, −d < y < d where L→ ∞. Using the periodicity of φ, φy ,
G and Gη from (2.6), (2.7) and the exponential decay of G from (2.11) reduces (3.1) to

φ(p) =

∫
∂D

φ(q)
∂G(p|q)

∂nq
dsq, p 6∈ ∂D, (3.2)

whilst

1
2
φ(p) =

∫
∂D

φ(q)
∂G(p|q)

∂nq
dsq, p ∈ ∂D, (3.3)

which provides the necessary integral equation for φ(p) on ∂D. The value of φ
everywhere in the strip can then be determined from (3.2).

In operator notation, (3.3) is

(Kφ)(p) = 1
2
φ(p), p ∈ ∂D, (3.4)

where

(Kφ)(p) =

∫
∂D

φ(q)
∂G(p|q)

∂nq
dsq. (3.5)

We also introduce the inner product

〈u, v〉 =

∫
∂D

u(p)v̄(p) dsp.

Alternatively, if we formulate the problem by representing the potential as a distri-
bution of sources of strength µ(p) over ∂D we obtain

(K∗µ)(p) = 1
2
µ(p), p ∈ ∂D,

where K∗ is the adjoint of K.
When the cylinder cross-section is symmetric, the integral equation can be simplified

by posing it on only one half of ∂D. Replacing y by −y and η by −η in (3.3) and
using the fact that ∂D is invariant under reflection in y = 0 above we can formulate
the integral equation as

1
2
φ(−p) =

∫
∂D

φ(−q)
∂Ḡ(p|q)

∂nq
dsq, p ∈ ∂D, (3.6)
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where (2.14) has been used. Here, we write −p and −q to represent the points (x,−y)
and (ξ,−η) respectively. Let ∂D = ∂D+ ∪ ∂D−. Then (3.3) can be written

1
2
φ(p) =

∫
∂D+

φ(q)
∂G(p|q)

∂nq
dsq +

∫
∂D+

ψ(q)
∂H(p|q)

∂nq
dsq, p ∈ ∂D+,

where H(p|q) = G(p| − q), ψ(p) = φ(−q) and (3.6) is

1
2
ψ(p) =

∫
∂D+

φ(q)
∂H̄(p|q)

∂nq
dsq +

∫
∂D+

ψ(q)
∂Ḡ(p|q)

∂nq
dsq, p ∈ ∂D+,

and (2.13) and (2.14) have been used in the above pair of equations. More compactly,
these coupled integral equations can be written in operator notation as

(Gφ)(p) + (Hψ)(p) = 1
2
φ(p),

(H̄φ)(p) + (Ḡψ)(p) = 1
2
ψ(p),

}
p ∈ ∂D+, (3.7)

where

(Gφ)(p) =

∫
∂D+

φ(q)
∂G(p|q)

∂nq
dsq, (Hφ)(p) =

∫
∂D+

φ(q)
∂H(p|q)

∂nq
dsq.

It follows from (3.7) that

φ(p) = cφ̄(−p), |c| = 1.

In fact we can arrive at this result from the governing equations using physical
arguments. Assume, therefore, that φ(x, y) is a solution to (2.1), (2.2) and (2.3). Then
φ̄(x, y) must also be a solution and from (2.5) satisfies

φ̄(x, y) = e−iβyφ̂(x, y).

Physically, the potential φ̄ represents a wave travelling in the opposite direction along
the array. Since the geometry is symmetric about the line y = 0, φ(x, y) must be
related to φ̄(x,−y) by a constant, c say. In other words

φ(x, y) = cφ̄(x,−y),

and by replacing y by −y, it is easily seen that |c| = 1. Writing c as e−2iα we have

φ(x, y) = e−2iαφ̄(x,−y), (3.8)

and the phase α is fixed by taking y = 0 in the above, though it remains an unknown
of the problem.

Solution

The condition for the existence of a Rayleigh–Bloch surface wave is that (3.3) is
satisfied with φ(p) 6≡ 0 for a real value of k. In order to numerically compute these
values of k, we follow Linton & Evans (1992), letting ∂D be given in the polar
coordinates by (ρ(θ), θ) and parametrizing the points p and q by θ and χ respectively.
Then

1
2
φ(θ) =

∫ 2π

0

φ(χ)
∂G(θ|χ)
∂nq

w(χ) dχ, 0 6 θ < 2π, (3.9)

where w(θ) = {ρ2(θ) + ρ′2(θ)}1/2 and

∂

∂nq
=

1

w(χ)

(
x′(χ)

∂

∂η
− y′(χ) ∂

∂ξ

)
.
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We use the Green function representation in (2.12), which is well-behaved everywhere
apart from at kr0 → 0 where G has a logarithmic singularity. In this case, where
p = q, we write G = G̃+ log(r0)/2π and take the limit r0 → 0, where

G̃(p|q) = −1

4

∞∑
m=−∞

eiβmY

2γmd

[
eγmXerfc

(
γmd

a
+
aX

2d

)
+ e−γmXerfc

(
γmd

a
− aX

2d

)]

− 1

4π

∞∑
m=−∞6=0

ei2βmd

∞∑
n=0

1

n!

(
kd

a

)2n

En+1

(
a2r2

m

4d2

)
− 1

4π

∞∑
n=2

1

n!

(
kd

a

)2n

En+1 (0)

since in (2.12), the logarithmic singularity is embedded in the exponential integral
E1(a

2r2
0/4d

2), whilst

lim
r0→0

∂

∂nq

(
1

2π
log r0

)
=

1

4πw3(χ)
{ρ′(χ)ρ′′(χ)− ρ2(χ)− 2ρ′2(χ)}

(see Linton & Evans (1992) for more details).
We discretize the interval [0, 2π] in (3.9) into 2M equal segments of length π/M

and collocate at θi = (i− 1
2
)π/M, i = 1, . . . , 2M to arrive at the system

1
2
φ(θi) =

π

M

2M∑
j=1

Kijφ(θj), i = 1, . . . , 2M,

where

Kij = w(θi)
∂G(θi|θj)
∂nq

,

treating carefully the special case i = j in the manner described above. Rayleigh–Bloch
waves correspond numerically to the vanishing of the 2M×2M complex determinant
with elements

δij − 2π

M
Kij . (3.10)

The difficulty here lies in the fact that we are restricted to using real values of k to
seek zeros of a generally complex determinant.

If the cylinder cross-section is symmetric, the symmetries in the coupled system (3.7)
allow a simplification to the computational requirements. In this case, we follow the
discretizing procedure outlined above, but since the coupled system is only defined
on ∂D+, the positive half of ∂D, we only need to collocate at θi = (i − 1

2
)π/M,

i = 1, . . . ,M. The final system is

π

M

M∑
j=1

{Gijφ(θj) +Hijψ(θj)} = 1
2
φ(θi),

π

M

M∑
j=1

{
H̄ijφ(θj) + Ḡijψ(θj)

}
= 1

2
ψ(θi),


i = 1, . . . ,M,

and then Rayleigh–Bloch surface waves correspond to the vanishing of the 2M× 2M
complex determinant of the matrix

2π

M
K − I (3.11)
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where K = {Kij}, I = {δij}, i, j = 1, . . . , 2M, and we have defined the block-matrix

K =

(
G H
H G

)
with G = {Gij}, H = {Hij}, i, j = 1, . . . ,M,

Gij = w(θi)
∂G(θi|θj)
∂nq

, Hij = w(θi)
∂G(θi| − θj)

∂nq
.

Although the matrix K is complex, the determinant of (3.11) is in fact real. This is as
a consequence of the block structure of K and can be shown as follows. First define
the unitary matrix U = {δi,2M+1−i}, i = 1, . . . , 2M, having zero entries everywhere apart
from values of 1 along the ‘wrong’ diagonal. Then, since det{U} = 1 and U2 = I ,

det

{
2π

M
K − I

}
= det

{
2π

M
UKU − U2

}
= det

{
2π

M
K − I

}
= det

{
2π

M
K − I

}
and hence the determinant is real.

There is a second instance under which the generally complex determinant system
can be reduced to a real one: when the Green function itself is purely real. This occurs
when βd takes the specific values 1

2
π and π (see the discussion at the end of § 2),

although since we use Gπ in (2.15) for βd = π, this has the effect of imposing Dirichlet
conditions φ(x, y) = 0 on y = 0,±d. This antisymmetry about the line y = 0 implies
that the use of Gπ is only valid for cylinders whose cross-sections are symmetric. No
such restriction applies when βd = 1

2
π.

The numerical procedure

Let us first discuss the numerical procedure, which is common to all results that follow.
In every case below, we are concerned with finding real values of kd for which the
determinant of the system having elements given by (3.10) vanishes. The computation
of the elements Kij requires the evaluation of derivatives of the Green function, G. We
use the representation for G given by (2.12), whose explicit derivatives with respect to
ξ and η can be computed very accurately and efficiently (this is not always the case
with other representations of G!). We use a value of a = 1 for the arbitrary parameter
which suffices for our purpose, though it could no doubt be optimized (see Linton
1998). The remaining parameter in the numerical procedure is M, which controls the
number of collocation points used. For most cylinder cross-sections with ‘smooth’
boundaries, the choice M = 16 ensures that the determinant is accurate to at least
four decimal places. There are cases when the numerical method may break down,
for example if the width of the cross-section is greater than about 90% of the period
(since there is interference with the image of Green functions as adjacent cylinders in
the array become too close). Inaccuracies can also creep into the computations if the
ratio of width to length of the cross-section becomes too small (below one in four)
since then there is interference between close source points on opposite sides of the
cylinder. It should be emphasized that this is a manifestation of the approximation
scheme we have employed and has nothing to do with the validity of the integral
equations themselves. For cylinder cross-sections with non-smooth boundaries, such
as rectangles, the value of M has to be increased to retain the four decimal place
accuracy. A more sophisticated numerical scheme should be used for cross-sections
with such boundaries, but for our purposes the one used here is sufficient.

Throughout the results section we will concentrate on cylinder cross-sections of the
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a/d M = 8 M = 16 Evans & Porter (1998)

0.2 1.49692 1.49698 1.49699
0.4 1.43001 1.49010 1.49012
0.6 1.33974 1.33985 1.33987
0.8 1.31273 1.31306 1.31309
1.0 1.42786 1.41129 1.41205

Table 1. The convergence of the numerical scheme for a circular cylinder
radius a with βd = 1.5.

form

(xθ/a)
n + (yθ/b)

n = 1, (3.12)

where

xθ = x cos θ − y sin θ, yθ = x sin θ + y cos θ

are coordinates rotated through an angle θ. Such a cross-section provides many
possibilities. For example, when n = 2, we have an ellipse of aspect ratio b/a. As
n→∞ we recover a rectangular cross-section of length 2a and width 2b and for n = 1
we have a parallelogram of diagonal lengths 2a and 2b. Finally, all these symmetric
cross-sections can be made unsymmetric by rotating through an angle θ.

The numerical method has been checked against existing results for Rayleigh–
Bloch surface waves in the cases of circular and rectangular cross-sections (see Evans
& Porter 1998 and Evans & Fernyhough 1995 respectively). Table 1 shows the
convergence of values of kd with M in the case of a circular cylinder and compares
them with the accurate results of Evans & Porter (1998).

4. Results for symmetric cross-sections
4.1. Rayleigh–Bloch solutions for symmetric cross-sections

In this section results are presented for cylinder cross-sections which are symmetric
with respect to the plane perpendicular to the plane containing the cylinders in the
array. We recall from the previous section that, in this symmetric configuration, the
Rayleigh–Bloch surface waves correspond to the vanishing of a real determinant for
some real wavenumber, kd.

A typical set of results for Rayleigh–Bloch surface waves is shown in figure 1. These
show the variation of kd with βd for a range of symmetric elliptical cross-sections
of length a/d = 1 and aspect ratios of b/a = 3

4
, 1

2
and 1

4
. Also shown in figure 1

is the Rayleigh–Bloch dispersion curve for an infinite periodic array of thin parallel
plates of length a/d = 1 computed using the approximate formula of Evans & Linton
(1993). Thus for a particular choice of Rayleigh–Bloch wavenumber βd, periodicity
of 2d and plate length 2a, values of k < β satisfy

ka− 1
2
π =

∞∑
n=1

{
sin−1

(
2kd

nπ

)
− sin−1

(
k

βn

)
− sin−1

(
k

|β−n|
)}

+
2kd

π
ln 2−sin−1

(
k

β

)
.

It is interesting to note how the Rayleigh–Bloch results converge to those for a flat
plate as the ellipse is made thinner. In fact the agreement between the results for a
plate and an ellipse of aspect ratio of b/a = 1

4
is to within just over 1%.

Notice from figure 1 that we only consider 0 < βd 6 1
2
π. This is due to the fact
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Figure 1. The variation of kd with βd for elliptical cross-sections (x/a)2 + (y/b)2 = 1, a/d = 1 with
various aspect ratios b/a shown against curves. Also shown are the ‘approximate’ results for a thin
flat plate.

that

kd(βd) = kd(π − βd), and kd(βd) = kd(jπ + βd), j = 1, . . . . (4.1)

The latter of these is obvious from inspection of (2.8), (2.9), whilst the former can
be shown simply by letting β′d = π − βd and then from (2.9), β′m = −β−m−1 and
γ′m = γ−m−1. Using this in (2.8), for example, with primes indicating the use of β′
shows that

G′(x, y|ξ, η) = Ḡ(x, y|ξ, η).

Also, from (2.4), φ′(x, y + 2jd) = e−i2β′djφ′(x, y) so that

φ′(x, y) = φ̄(x, y).

It follows from using Green’s Identity in (3.1) with φ′ and G′ replacing φ and G that

1
2
φ′(p) =

∫
∂D

φ′(q)
∂G′(p|q)

∂nq
dsq

and conjugating this results in the integral equation (3.3).
Rayleigh–Bloch results can also be computed for βd = π, when Gπ defined in (2.15)

is used. Thus, for the three values of b/a = 1
4
, 1

2
, 3

4
, the corresponding values of kd(π)

are 2.93966, 2.96010, 2.83631 respectively.
A different way of representing the results is presented in figure 2, where curves of

kd against b/d are plotted for various values of βd in the case of an elliptical cross-
section of constant aspect ratio b/a = 1

2
so that b/d measures the size of the cylinder.
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Figure 2. Curves of wavenumber, kd, versus geometry b/d for elliptical cylinders with constant
aspect ratio b/a = 1

2
and for various values of βd shown against curves.

The results stop short of b/d = 1 due to numerical difficulties. Notice that, for each
value of βd shown, there is a Rayleigh–Bloch mode which exists for all 0 < b/d 6 1,
and, for b/d large enough, a second mode appears. This is just the next highest mode
which is capable of being supported due to the increased length of the cylinder and is
antisymmetric about the line joining the cylinders in the array. For longer cylinders
further modes occur alternating between symmetric and antisymmetric about this
line joining the cylinders (see, for example, Evans & Linton 1993). Notice that the
extra graph for βd = π required the use of Gπ . The particular values of βd chosen in
figure 2 are of relevance to the following subsection.

The results shown in figures 1 and 2 are typical of Rayleigh–Bloch solutions for
many other cylinder cross-sections.

4.2. Trapped modes about multiple cylinders spanning a channel or waveguide

We have seen that for a each infinite array of symmetric cylinder cross-sections it is
possible, for each choice of βd 6 1

2
π, to find value(s) of kd corresponding to Rayleigh–

Bloch surface waves. However, by choosing appropriate forms for βd we can enforce
certain periodic conditions on the solutions which can be interpreted as describing
trapped modes at that wavenumber kd in a waveguide or channel spanned by any
(finite) number of cylinders of identical cross-section. This observation was also noted
in McIver et al. (1998) who considered Rayleigh–Bloch surface waves along coastlines
generated by periodic arrays that were generated by singular potentials.
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Assume that each cylinder cross-section, D, is symmetric as in the previous section.
First we redefine the location of the origin, and place it for convenience to coincide
with a line of geometric symmetry between two adjacent cylinders. Then y = 2Nd
is also a line of geometric symmetry bisecting the Nth and (N + 1)th cylinders. The
strip of width 2Nd now contains N cylinders.

Recall from (2.4) the relation

φ(x, y + 2Nd) = ei2Nβdφ(x, y),

the same periodicity relation also being satisfied by the function φy(x, y). Thus we
can ensure the solution is periodic in y with period 2Nd by choosing

βd = nπ/N, n = 1, . . . , N. (4.2)

In fact, since kd(βd) = kd(π − βd) from (4.1), only the values of n = 1, . . . , [ 1
2
N];N,

where [x] denotes the integer part of x, are needed to construct the complete set of
values of kd.

Alternatively, a ‘half-periodic’ potential can be constructed by choosing

βd = (n− 1
2
)π/N, n = 1, . . . , [ 1

2
(N + 1)], (4.3)

such that φ(x, y + 2Nd) = −φ(x, y) and φy(x, y + 2Nd) = −φy(x, y). That is, the
potential has opposite signs in adjacent 2Nd-width strips. In general, therefore,
βd = mπ/2N, m = 1, . . . , N; 2N gives rise to either 2Nd-periodic (m even) or 2Nd-
half-periodic (m odd) functions φ(x, y). There are, then, for N cylinders, a total of
N + 1 values of βd leading to N + 1 distinct values of kd.

Since we have chosen y = 0 to coincide with a line of geometric symmetry we
can apply the relation in (3.8) and may, without loss of generality, incorporate an
arbitrary phase into the potential φ. Thus, we consider the potential

χ(x, y) = eiαφ(x, y)

whence

χ(x, y) = χ̄(x,−y).

Now since χ(x, y) is a Rayleigh–Bloch solution, then its symmetric and antisymmetric
parts, decomposed about the line of geometric symmetry, also satisfy all the conditions
of the problem. We can therefore consider the following two potentials:

χN(x, y) = Re {χ(x, y)}, χD(x, y) = Im {χ(x, y)}
such that

χN(x, y) = χN(x,−y) and χD(x, y) = −χD(x,−y),

and as a consequence,

χNy (x, 0) = 0 and χD(x, 0) = 0,

where it is now clear that the superscripts N and D indicate that the potentials satisfy
Neumann and Dirichlet (respectively) conditions on the line y = 0. Note that these
two potentials are purely real, a property which is typical of standing waves since
with time re-introduced into the full potential we have

ΦN,D(x, y, z, t) = χN,D(x, y) cosh k(H − z) cosωt.

There are now four different situations available to us. These are best represented
schematically by a typical cross-section of the 2Nd-width strip as in figure 3. Let us
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Figure 3. The features of the four possible modes corresponding to (a) periodic and
(b) half-periodic solutions in a uniform strip of width 2Nd containing N cylinders.

justify the form of the possible potentials in this figure. Clearly, when the solution
is periodic χN,D(x, 0) = χN,D(x, 2Nd) and χN,Dy (x, 0) = χN,Dy (x, 2Nd) which fixes the
behaviour at the two extremes of the strip in figure 3(a). Within each strip, the
cylinders are arranged symmetrically about the centre of the strip which allows both
χN and χD to be decomposed further into their symmetric and antisymmetric parts.
In each case, however, one of these must be identically zero because otherwise it
would contradict the behaviour already established at the ends of the strip. Thus, for
a periodic solution, χN must also be an even function in y across y = Nd (the centre
of the strip). Similarly, for a periodic solution, χD must be odd in y across y = Nd.

For half-periodic solutions, similar arguments apply. The functions χN,D and their
derivatives take opposite values at the two extremes of the strip, which fixes their
behaviour at y = 0, 2Nd. Again, geometric symmetry about the centre of the strip
allows further decomposition into symmetric and antisymmetric components, only
one of which is not identically zero in each of the Neumann and Dirichlet cases. The
functions χN and χD must therefore take the form shown in figure 3(b), with χN odd
about y = Nd and χD even.

Note that figure 3 only demonstrates the general features of the profile in y across
the strip. Within these restrictions, the functions χN,D may take on a general form and
do, of course, vary with x.

We consider first the case of N = 1 when βd = 1
2
π, π correspond to half-periodic

and periodic solutions respectively in a strip of width 2d containing a single cylinder
symmetric about y = d, and the possible solutions are again described by figures 3(a),
3(b) but with N = 1. The possibility of a solution χD with βd = 1

2
π as in figure 3(b)

having Dirichlet conditions on y = 0, 2d, is ruled out by a theorem of McIver &
Linton (1995, p. 548, equation (3.7)) which shows that no trapped modes exist with
kd < 1

2
π provided that the upper half of the cylinder can be described by a function

f : x → f(x). The solution χN with βd = 1
2
π described in figure 3(b) is just the

well-known antisymmetric Neumann trapped mode about a symmetric cylinder on
the centreline of a channel, the existence of which was proved by Evans et al. (1994).



248 R. Porter and D. V. Evans

For βd = π, the Green function Gπ defined by (2.15) is used and so (2.16) implies
that the solution must correspond to χD as shown in figure 3(a). This corresponds
to an antisymmetric trapped mode about a single cylinder placed on the centreline
of a channel having Dirichlet conditions on the walls. This Dirichlet trapped mode
does not always exist. However, the method used by Evans et al. (1994) to show
the existence of trapped modes in a Neumann waveguide can easily be adapted to
consider the case of a waveguide having Dirichlet conditions on the walls containing
a cross-section described by f: x→ f(x), −a < x < a, with f(±a) = 0 to show that a
Dirichlet trapped mode exists provided∫ 1

−1

sin (2πf(ax)/d) dx > 0. (4.4)

Note that this inequality is independent of the length of the cylinder in the waveguide.
In the case of a circular cylinder, for example, (4.4) reduces to J1(2πa/d) > 0 or
a/d . 0.61, consistent with the result a/d . 0.68 of Maniar & Newman (1997). It
is evident from (4.4) that a Dirichlet trapped mode exists for all cylinder sections
occupying not more than half the channel width. Using cylinder cross-sections given
by (3.12), we can use (4.4) to shed some light on what other features of the geometry
dictate the existence of trapped modes in Dirichlet waveguides. Thus, in figure 4, the
solid curve represents the maximum width, b/d, of a cross-section (x/a)n +(y/b)n = 1,
below which existence of a Dirichlet trapped mode is guaranteed for all lengths
of cylinder cross-section a/d. Also shown in figure 4 are computed curves of the
actual range of existence of Dirichlet trapped modes for particular values of a/d.
As n → ∞, the results converge to b/d = 1

2
in agreement with the specific analysis

for a rectangular block which reveals that Dirichlet trapped modes do not exist for
b/d > 1

2
. As a/d→ 0, corresponding to a narrowing cylinder, the results converge to

the theoretical curve computed from (4.4) indicating that the inequality (4.4) which
is independent of a/d is sharp. As a/d increases, the range of values of b/d increases
for a particular value of n.

Returning to general N, we have seen that there are, in general, for N cylinders
in a channel of width 2Nd, N + 1 possible values of βd given by βd = mπ/2N,
m = 1, . . . , N; 2N giving rise to trapped modes. The condition (2.4) shows that the
particular values βd = 1

2
π, π give rise to solutions which are half-periodic or periodic

respectively, in each of the sub-channels of width 2d containing a single cylinder.
These solutions are just the Neumann mode, and the Dirichlet mode, where it exists,
respectively discussed above in the case N = 1. Thus the solution in the full channel
of width 2Nd in this case is simply the superposition of the Neumann or Dirichlet
mode for a single cylinder in each of the sub-channels of width 2d.

For the remaining N−1 values of βd, φ is complex and both χN and χD give rise to
possible solutions for the same value of kd, having the general structure described in
figure 3. Of particular interest is the conclusion that, for N > 1, those χN described by
figure 3(a) also satisfy a Neumann condition on the centreline of the channel of width
2Nd spanned by N cylinders. For N even this is not surprising since the solution is
then simply equivalent to two channels, each of width Nd with trapped modes which
are mirror images of each other. But for N odd, the centreline of the channel is
occupied by a cylinder and there are 1

2
(N−1) identical cylinders equally-spaced either

side of it. Thus, whereas a single cylinder on the centreline of a channel requires the
solution of a Neumann trapped mode to be odd about the centreline as in Evans et
al. (1994), the introduction of additional pairs of cylinders either side of the centreline
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Figure 4. Curves showing maximum width, b/d, of a cylinder in a Dirichlet waveguide for which
trapped modes exist for a cylinder cross-section (x/a)n + (y/b)n = 1 as n varies. Values of a/d are
shown above curves. The solid curve shows maximum cylinder width predicted from equation (4.5).

results in two different types of Neumann trapped modes, χN , which can be either
odd or even about the centreline.

A similar conclusion can be deduced about χD , for N > 1, where both types
described in figure 5(a, b) arise, in contrast to the single cylinder case where only the
Dirichlet mode described by χD in figure 5(a) occurs.

Thus, for a configuration of N cylinders, there is a total of N Neumann trapped
modes and up to N Dirichlet trapped modes.

An example of the trapped mode wavenumbers that occur for N = 1, . . . , 5 circular
cylinders each of radius a/d = 1

2
placed periodically across a waveguide of width 2Nd

is shown in table 2. For each value of N, the set of N+1 values of βd is given by (4.2)
and (4.3) and Rayleigh–Bloch theory is then used to calculate the values of kd(βd).
The importance of the curves in figures 1 and 2 is now evident. For a particular
symmetric cross-section, there exists a curve of βd against kd, from which trapped
mode wavenumbers for N cylinders in a waveguide are given simply by reading off
kd at values of βd = mπ/2N, m = 1, . . . , N; 2N. Alternatively, for a fixed number
of cylinders in a waveguide, curves such as those shown in figure 2 for appropriate
values of βd give the trapped mode wavenumbers, kd, over a range of cross-sections.

The first two columns in table 2 correspond to Dirichlet and Neumann modes
about each of the cylinders separately so that the problem has degenerated into the
motion in N separate sub-channels each of width 2d. Note that the trapped mode
wavenumbers kd(βd) for N > 1 lie within the continuous spectra [π/2Nd,∞) and
[π/Nd,∞) for Neumann and Dirichlet waveguides respectively of width 2Nd. Other
values of βd give rise to both Neumann and Dirichlet modes at the same value of kd.
Note that for N > 1, all but the smallest value of kd is above the lowest point of the
continuous spectrum for a channel of width 2Nd. The values of kd in table 2 are in
exact agreement with those of Utsunomiya & Eatock Taylor (1998).
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Dirichlet Neumann Dirichlet
N only only and Neumann

(π) ( 1
2
π)

1 3.07172 1.39131

(π) ( 1
2
π) ( 1

4
π)

2 3.07172 1.39131 0.78027

(π) ( 1
2
π) ( 1

3
π) ( 1

6
π)

3 3.07172 1.39131 1.03184 0.52227

(π) ( 1
2
π) ( 3

8
π) ( 1

4
π) ( 1

8
π)

4 3.07172 1.39131 1.15193 0.78027 0.392164

(π) ( 1
2
π) ( 2

5
π) ( 3

10
π) ( 1

5
π) ( 1

10
π)

5 3.07172 1.39131 1.22016 0.93245 0.62592 0.31389

Table 2. Trapped mode wavenumbers kd(βd) (values of βd shown in brackets above) for N circular
cross-sections, a/d = 1

2
, in a parallel waveguide with either Dirichlet or Neumann conditions placed

upon the walls.

By way of a demonstration of the form that these trapped modes take in a channel,
we look at the surface elevation for all the possible modes that occur for N = 3 ellip-
tical cylinders of dimensions a/d = 1, b/a = 1

2
. Then from (4.2) and (4.3) the relevant

Rayleigh–Bloch wavenumbers are just βd = {π, 1
2
π, 1

3
π, 1

6
π}. The corresponding values

of kd can be read off from figure 2 with b/d = 1
2

and computations show that the val-
ues are {2.96010, 1.09407, 0.92982, 0.51252}. Of course, for βd = π the trapped mode is
effectively just three parallel Dirichlet-walled channels placed side by side. The same is
true for βd = 1

2
π, only with Neumann wall conditions. The surface elevations of these

two modes are shown, for a single cylinder, in figures 5(a) and 5(b). The shading on
the inside of the cylinder refers to the level φ = 0, whilst light/dark shading represents
peaks/troughs. Since the trapped mode corresponds to a homogeneous solution, the
surface elevation may be scaled by an arbitrary factor. For extra information, the
straight lines on which Neumann and Dirichlet conditions apply are denoted in the
figures by N and D respectively. It is apparent that the field close to the cylinder
surface is not represented very accurately. This is due to the fact that the field outside
the cylinder is calculated numerically using the discrete form of (3.2) which replaces
the continuous distribution of sources around the cylinder with a discrete distribution.
Instead, the field in the vicinity of the cylinder has been calculated by crudely extrap-
olating the value of φ on ∂D into the field so as to satisfy (2.2). The value of φ on ∂D
is computed at the discrete points φ(θi) which represent the components of the eigen-
vector, Φ, corresponding to the eigenvalue λ = 0 in the system ((2π/M)K − I )Φ = λΦ.

For βd = 1
3
π or 1

6
π, the situation is more complicated. Here, for each value of

βd both Neumann (χN) and Dirichlet (χD) modes exist at the same value of kd, but
take independent modal shapes. Thus, for βd = 1

3
π, the lower-right-hand quadrant

of the field for the function χN is shown in figure 6(a) having Neumann conditions
on the channel walls and on the centreline in contrast to the single cylinder case,
whilst χD is shown in figure 6(b) with Dirichlet conditions on both the walls and the
centreline. These are in agreement with the features demonstrated in figure 3(a). In
order to restore the full waveguide, one must make appropriate reflections about the
two centrelines. Similarly, for βd = 1

6
π, corresponding to a half-periodic solution we
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Figure 5. The field for (a) the Neumann (βd = 1
2
π) and (b) Dirichlet (βd = π) trapped modes

about a elliptical cylinder, b/a = 1
2
.

expect the modal form in figure 3(b). This is confirmed in the surface elevation plots
of figures 7(a) and 7(b) for the two functions χN and χD .

It is now easy to visualize the trapped modes for other numbers of cylinders
spanning a channel. For example, with N = 4 cylinders, we expect five different
situations: two modes consist of four single-cylinder Dirichlet trapped modes placed
side by side (βd = π), and four Neumann trapped modes placed side by side
(βd = 1

2
π); another is formed by gluing together two trapped modes corresponding

to two cylinders in a channel (βd = 1
4
π); and two more exist for the full four cylinders

(βd = 3
8
π, 1

8
π).

5. Results for unsymmetric cross-sections with βd = 1
2π

We have already noted in § 3 how the generally complex determinant leading to
Rayleigh–Bloch mode wavenumbers can be made real by choosing the specific value
of βd = 1

2
π, without having made any restrictions on the choice of geometry. In
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Figure 6. The field in the lower-right-hand quadrant of (a) a Neumann and (b) a Dirichlet trapped
mode about three elliptical cylinders, b/a = 1

2
, a/d = 1, corresponding to βd = 1

3
π, occurring at

kd = 0.9298.

this section we focus on this value of βd = 1
2
π, and consider unsymmetric cylinder

cross-sections. In the previous section the case of βd = 1
2
π with symmetric cylinder

cross-sections was shown to correspond to antisymmetric trapped modes in a parallel
straight-walled Neumann waveguide. Evans et al. (1994) have shown that these
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Figure 7. The field in the lower-right-hand quadrant of (a) a Neumann and (b) a Dirichlet trapped
mode about three elliptical cylinders, b/a = 1

2
, a/d = 1, corresponding to βd = 1

6
π, occurring at

kd = 0.5125.

trapped modes exist for all symmetric cylinder cross-sections. However in the absence
of symmetry all that can be deduced from the choice of βd = 1

2
π is that the Rayleigh–

Bloch mode has period 2d. We can therefore expect, using continuity arguments, that
a smooth perturbation from a symmetric to an unsymmetric cross-section will lead to
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Figure 8. The variation of wavenumber kd when βd = 1
2
π as an elliptical cylinder with a/d = 4

5
and various aspect ratios (shown against curves) is rotated through an angle θ.

a smooth shift in the position of the zero of the determinant and hence in kd and a
smooth distortion of the parallel-sided walls from y = ±d. This is indeed what turns
out to be the case as our numerical examples will show.

As a first example, we consider a cylinder of fixed elliptical cross-section and
rotate it through an angle θ with respect to the centreline (see equation (3.12)).
Curves showing variation of the wavenumber kd with θ for βd = 1

2
π are presented in

figure 8 for four cross-sections having the same ‘length’ a/d = 4
5
, but aspect ratios of

b/a = 1, 3
4
, 1

2
and 1

4
. The first of these is just a circular cylinder and does not vary

with θ. For θ = 0◦ and 90◦ the solution refers to the antisymmetric trapped mode in a
straight-walled channel as discussed above where existence is guaranteed. In between
these two limits the geometry is unsymmetric and the wavenumber moves smoothly
from one limit to the other. Although the numerical method prohibits calculations
for thin geometries such as flat plates, we can use the convergence of the results
seen in figure 1 for a series of thinning ellipses to those for an equivalent thin plate
to surmise that these special Rayleigh–Bloch surface waves with βd = 1

2
π also exist

for an infinite periodic array of thin tilted parallel plates. Furthermore, the results
for b/a = 1

4
in figure 8 are probably a good approximation to the wavenumbers for

Rayleigh–Bloch modes about arrays of tilted thin plates. Note however that such
Rayleigh–Bloch modes do not exist if the plates are aligned with each other (θ = 90◦)
as in a perforated diffraction screen.

In figure 9 we have plotted the field lines in the vicinity of an elliptical cylinder
(a/d = 3

4
, a/b = 2

3
, θ = 45◦) and labelled the lines upon which Neumann (N) and

Dirichlet (D) conditions are satisfied. It can be seen that by replacing the dotted lines
by rigid walls, this particular Rayleigh–Bloch mode can be regarded as a trapped
mode about an unsymmetric cylinder in a channel of width 2d having distorted walls.
At either infinity the mode asymptotes to a straight-walled waveguide with a Dirichlet
condition on its centreline, although these asymptotes at x = ±∞ do not correspond
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Figure 9. The field lines for a Rayleigh–Bloch mode with βd = 1
2
π in the presence of a periodic

array of elliptical cylinders, b/a = 2
3
, θ = 45◦. Dashed line corresponds to the line on which normal

velocity vanishes.
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Figure 10. The field lines for a Rayleigh–Bloch mode with βd = 1
2
π in the presence of a periodic

array of unsymmetric cylinders; top half-circle, radius a/d = 1
2
, bottom half, ellipse with b/a = 3

2
.

Dashed line corresponds to the line on which normal velocity vanishes.

to the same values of y. This trapped mode in a parallel but distorted channel or
waveguide is a new addition to our catalogue of trapped modes and adds weight
to the conjecture that no trapped mode exists in the presence of an unsymmetric
cylinder on the centreline of a channel of rectangular cross-section.

When the cylinder array is symmetric about a line through the cylinders, as in
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kd kd Maximum non-dimensional
Geometry (trapped mode) (peak force) force on middle cylinder

b/a = 1
2

1.4102 1.4005 9.7

b/a = 3
2

1.3835 1.3760 10.0

Table 3. Comparison of trapped mode wavenumber with the wavenumber at which the maximum
force is experienced in an array of 25 cylinders having a circular upper cross-section a/d = 1

2
and

an elliptical lower cross-section (x/a)2 + (y/b)2 = 1.

figure 10, the waveguide asymptotes to the same values of y despite some local
distortion to accommodate the lack of symmetry in the cross-section. In figure 10 we
have chosen a cylinder cross-section which consists of a circular upper-half (a/d = 1

2
)

and an elliptical lower half (a/d = 1
2
, b/a = 3

2
).

It was found that for every example of cylinder cross-section computed numerically
by the authors, a zero of determinant, and hence a Rayleigh–Bloch mode with
βd = 1

2
π exists. It is therefore tempting to conclude that arrays of identical cylinders

of arbitrary cross-section will support these new trapped modes in distorted channels
or waveguides.

The importance of the occurrence of trapped modes about symmetric cylinders
in both Neumann and Dirichlet waveguides has been brought into focus by Maniar
& Newman (1997) who showed that large forces are experienced by cylinders in
a finite periodic array of such cylinders in an incident wave field. In the light of
the results from this section, we can now expect similar large forces in the case of
wave interaction with a finite periodic array of unsymmetric bodies. J. N. Newman
(personal communication) has computed the first-order forces on a finite array of
unsymmetric cylinders using a wave interaction program HIPAN. Two sets of results
for arrays of 25 cylinders consisting of hybrid cylinder cross-sections of the type
shown in figure 10 are shown in table 3. It can be seen that the difference between the
resonant wavenumber at which the largest force on the middle cylinder of an array
of 25 cylinders, non-dimensionalized with respect to the force on an isolated cylinder,
occurs and the actual Rayleigh–Bloch mode wavenumber, is small and in fact is
comparable to similar results for arrays of symmetric bodies (Maniar & Newman
1997). Finally, it should be noted that no solutions have been found for unsymmetric
cylinder cross-section at values of Rayleigh–Bloch wavenumbers, βd, other than 1

2
π,

due to the complex nature of the determinant.

6. Conclusion
In this paper, we have been concerned with computing solutions for Rayleigh–Bloch

surface waves along an infinite periodic grating consisting of identical cylinders of
uniform cross-section. We have also determined, numerically, what types of cylinder
cross-sections can support Rayleigh–Bloch waves. These localized surface waves are
described by a wave progressing along the grating with a dominant Rayleigh–Bloch
wavenumber, β, related to the change in phase from one cylinder to the next. Simple
arguments show that the periodicity in the geometry induces a cut-off frequency
below which a wave cannot radiate to infinity, and so the problem is reduced to
finding real values of wavenumber k such that k < β. The problem is formulated
using Green’s Identity with an appropriate Green function to construct an integral
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equation, whose approximate solution is sought by discretization and collocation.
Rayleigh–Bloch solutions are then determined by the real values of k such that the
determinant of the resulting complex system of equations vanishes. It was shown that
if each cylinder cross-section is symmetric about a line through it perpendicular to the
line containing all the cylinders in the grating the determinant of the system is real.
Results were presented for a range of such symmetric cylinder cross-sections. It was
also shown that by choosing particular values of β, the problem could be interpreted
as representing the trapped modes about any number of cylinders periodically spaced
across a waveguide or channel. Thus, curves such as those shown in figures 1 and 2
become extremely important in that they can be used to determine the frequencies of
trapped modes in the presence of any number of cylinders in a channel. The use of a
Rayleigh–Bloch approach to the problem provides confidence in seeking the existence
of such modes, all of which occur below the Rayleigh–Bloch cut-off k < β despite
being above the corresponding cut-off for the waveguide. Rayleigh–Bloch theory also
enables us to conclude that there exist N trapped modes in a Neumann waveguide
containing N cylinders and at most N trapped modes in a Dirichlet waveguide. Of
particular interest was the conclusion that Neumann trapped modes exist for any odd
number of identical symmetric cylinders spanning a waveguide and having a Neumann
condition on the centreline in contrast to the case of a single cylinder on the centreline.

For the special value of β = π/2d, where 2d is the separation between cylinders in
the array, it was shown that Rayleigh–Bloch surface waves are supported by cylin-
ders having arbitrary cross-sections and correspond to non-progressive or standing
modes. They provide new examples of trapped modes about unsymmetric cylinders
in distorted parallel channels or waveguides.

Rayleigh–Bloch surface waves are of importance in many fields of study, though
we have concentrated on the context of water waves here. In particular, Maniar
& Newman (1997) have shown how large forces and amplitudes can develop at
frequencies close to the trapped mode frequencies described here in the case of a
finite array of cylinders in the presence of a source of excitation such as an incident
wave field. We have now extended this to show that finite arrays of unsymmetric
cylinders will be subject to similar resonances. In the context of acoustics, we can now
predict resonant or trapped modes wavenumbers for either acoustically hard or soft
lined parallel waveguides containing a cascade of cylinders similar to those reported
by Parker & Stoneman (1989) for a cascade of thin plates.

There are still issues that need resolving. For example, do trapped modes exist
about multiple cylinders spanning a waveguide when they are not arranged in such
a way that they form part of an infinite array as described here? For two cylinders
placed symmetrically about the centre of the waveguide, Davies & Parnovski (1998)
provide different conditions under which they do and do not exist.

In work on the scattering theory for diffraction gratings, Wilcox (1984, p. 12)
states that no general criteria are known for the existence of Rayleigh–Bloch surface
waves satisfying a Neumann condition on the gratings. The numerical computations
presented here suggest that Rayleigh–Bloch waves exist near gratings formed by any
symmetric cross-section, and it may be possible to extend the work of Evans et al.
(1994) to provide a rigorous proof of this. The existence of Rayleigh–Bloch waves
above the cut-off frequency is unlikely apart from the special cases of βd = 1

2
π and

βd = π. See, for example, Evans & Porter (1998).
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